CONVECTIVE STABILITY OF A LAYER OF
MAGNETIZABLE LIQUID WITH SOLID BOUNDARIES
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The convective stability of a layer of magnetizable liquid with solid boundaries in inhomogeneous
transverse and longitudinal magnetic fields is studied. Magnetic field distortion producedby
the nonisothermal state of the liquid is considered.

Convective stability of a magnetizable liquid is usually studied withthe assumption that the magnetic field
is specified [1-5]. However, temperature perturbations lead to changes inmagnetic field intensity, which, as
was shown in [6, 7], can produce a significant effect on the liquid's convective stability. Thus, in [7] convec-
tive stability of a horizontal layer of magnetizable liquid ina longitudinal homogeneous magnetic field was
studied with consideration of distortions (perturbations) of the field produced by temperature perturbations.

It was shown thatin this case magnetic field perturbations lead to stabilization of the layer relative to pertur-
bations, the wave vector of which is directed along the field. In a study of stability ofa horizontal layer of
magnetizable liquid heated from below in a transverse homogeneous magnetic field [6], although field pertur-
bations were considered, their role wasnot clarified. Thus, the results obtained in those studies indicate that
the effect of magnetic field perturbations on convective stability of a magnetizable liquid may depend on the
direction of the equilibrium magnetic field, butthis dependence has notyet been clarified.

In order todetermine the manner inwhich the direction of the equilibrium magnetic field affects the con-
tribution of magnetic field perturbations to the thermomagnetic instability mechanism, we will conagider the con-
vective stability of a plane layer of magnetizable liquid with solid boundaries, heated frombelow, ina trans-
verse Hy(2z) and longitudinal Hx(z) magnetic field witha constantgradient along the z axis (the z axis of the
Cartesian coordinate system will be directed perpendicular tothe layer, and the x and y axes, along the layer).
These two problems differ only in the direction of the magnetic field. We assume that gravitational forces
are absent and that liguid magnetization is described by a linear "magnetic state" equation

M = M* 4y (H — H*) — (K + pM*) ©. (1)

We note that the magnetic fields Hy(z) and H,{(z) arenot exact solutions of Maxwell's equations. However, it
can be shownthat this formulation is a limiting case of the rigidly formulated problem of stability ofa cylindri-~
cal layer, statedin the following manner. A magnetizable electrically nonconductive incompressible liquidis
located in the gap between two solid cylindrical surfaces, the temperature of which is specified (the inner cylin-
der temperature T; ishigher than the outer cylinder temperature T,). It isassumed thatthe roles of internal
rotations, magnetostriction, and the magnetocaloric effectare insignificant and that gravitational forces are
absent. In this case amechanical equilibrium exists within the magnetizable liquid:

Tiln(r/r)) — TeIn(r/ry)

0 =0; T,=
0 ¢ In(ry/ry)

In this case Maxwell's equations permit equilibrium one-direction solutions: inone of the cases the mag-
netic fieldhas only an azimuthal component H =Hg(r) =1/2rr andcan be created bya current I flowing through
the inner cylinder, while in the second case there is only a radial component; i.e.,

(K =+ BM*) [Te In(r/r) —Ty In(riry)]

(14 %) In(ra/ry)
It is assumed here thatthe cylindrical layer of magnetizable liquid is surrounded by a nonmagnetic mass and
that the gapbetween the cylinders is small, i.e., I/Ry<1l [l =1, — 1y; Ry = (r; + 1;)/2]. We expand the expres-

sions obtained for T, H¢(r), Hy(r) in powers of /R, and z/R, where z=r — R;. Limiting ourselves to the
first terms of these expansions, we obtain

H=H( :const i
r
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Fig. 1. Function Raff(A,) for various values of parameter A;: 1) A, =
1; 2) 5; 3) 15.

Fig. 2. Function Ra§(A,) for various values of parameter A,: 1) A, =
1;2) 0.5; 3) 0.3.

T[) S ——(Ti '—“Tz) Z/l '+‘ (Tl —E— Tz)/2,
Hy(r)= H,(2) = (/2nRy) (1 — 2/ Ry),
H,(r) = H,(2) = const (1 —2/Ro)/Ry + (K + BM*) (T\—T2) /(1 +x) L.

Thus, the study of convective stability of a thin cylindricallayer of magnetizable liquid in magnetic fields
Hy(r) and H,.(r) is mathematically equivalent to study of convective stability of a plane layer of magnetizable
liquid in longitudinaland transverse magnetic fields with a constant transverse gradient, We will consider each
of these cases separately.

—

1. H-=[Hx(z) =H*+Gz; 0;0]. We willassume that perturbations of velocity. temperature. and magnetic
field satisfy a system of linear ferrohydrodynamics equations in the Boussinesq approximation. We choose
as scale coefficients the thickness of the layer I for the coordinate, ! %/v for time, v/I for velocity, y! for temper-
ature, Gl formagnetic field, and eliminate gradient terms from the motion equations. Then in the weak field
inhomogeneity approximation H*>> Gl the system of defining dimensionless equations will have the form [10]

d 2 o, > (62.02)033
— A% LG - O0—Gr, | — <+ T @
o M n (o= o) 0= (55 455 ) 5
90 1
at Pr
20 00
AAD+ (1 —A) =5 — A, — =0. “
1 =+ ( 1) axg axj

Here 8/0x; isthe derivative along the Cartesian coordinate along which the equilibrium magnetic field is direct-
ed. The longitudinal field case consideredhere corresponds to Xj =X; Grm =po(K +BM*)yG14/p*1? is the
Grashof magnetic number., The criterion A; = (1+M#*/H*)/(1+y) characterizes the deviation of the "magnetic
state" equation from linearity, while A, = (K+ BM*)y/(1+x)G characterizes the ratio of the inhomogeneity in the
magnetic field produced by the nonisothermal state of the liquid to the value of the characteristic magnetic field
gradient.

Introducing normal perturbations

v, O, ®~expilkyx - ky), (5)
we obtain from system (2)-(4) equations for the amplitudes:
dz 2
( o &2 ) v—Ra, k20 — Ra k% ® = 0, (6)
12 A
v+(d ~—k2)6:0, 7
dz?

a0

2

= 0. (8)

— Ay ik, 0 — (k2 - A k2) © = 4,
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If the layer is bounded by rigid walls, the temperature of which is specified, then the boundary conditions for
velocity and temperature have the form

- <u

D= — =0 = = 2.

v o 0 for z=1/ (9)
The boundary conditions for the potential & are complicated by the fact that periodic magnetic field perturba-
tions produced within the liquid by temperature perturbations induced a periodic magnetic field outside the
layer. If the layer of magnetizable liquid is bounded by nonmagnetic semispaces, then outside the layer the
magnetic potential ¢ will be defined by the equation

dz ” _
(~d—zz—-k>‘F—0- (10)

From the condition of continuity of the normal component of induction andthe tangential component of
magnetic field intensity on the boundary, itfollows that

woo Y mrEm i
dz dz

(11)
Substituting the solutions of Eq. (10) in Eq. (11) gives boundary conditions for &, analogous to those obtained
in {6}:

(1—;—M*/H*)%(?iktl)=0 for z=+1/2. (12)
¥4

System (6)-(8) is invariant for the transformation z — —z, sothat the exact solutions for perturbations
of velocity, temperature, and magneticfield areeven. We will solve the system of equations (6)-(8) with bound-
ary conditions Egs. (9), (12) by the Galerkin method, writing the veloeity and temperature inthe form

- “ i1, . “ . - 4
v_gl a; (22— 14T e_glbl(z2 1/4y. (13a)

The functions for the velocity and temperature perturbations satisfy the boundary conditions.

Use of the Galerkin method with equations of the form of Eq. (8) is somewhat specialized because of the
form of the boundary conditions for the magnetic field perturbation potential: In these cases it is sufficient to
havea system of functions which satisfy only the completeness condition [8, 9]. Therefore, the function for the
magnetic field perturbation potential can be chosen for convenience in further integration in the mostsimple
form:

n+2
I (130)
i=1

Following the Galerkin method, we require that Eq. (6) be orthogonal to every test function for velocity, while
Eq. (7) must be orthogonal to every temperature testfunction. For Eq. (8), due to the fact that test functions
for the magnetic field perturbation potential Eq. (13b) do not satisfy the boundary conditions Eq. (12), orthog-
onality is understood inthe following sense [9, 10]:
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v _ k0 } —o. (14)
dz 1+ M¥H* j— 9

Asg a result, we obtainfrom the orthogonality conditions a system of homogeneous linear equations for the
coefficients of the expansions of the testfunctions. This system of equations has a solution whenand only when
its determinant is equal to zero, which leads to a characteristic equation for determining the eigenvalue Rayy,,
which in the first approximation of the Galerkin method may be found analytically:

Ra,, = 19600 (0.8 + 4k%/105 -+ £%/630) (1/3 -+ k2/30)/ + Ray, Agk? (1425 — A/ + Agy/72)/A;, (15)

where A;, Ay, Az, Ayg are third-order determinants, which willnot be presented here because of space limita-
tions.

From analysis ofEq. (15) it follows that the parameter Rayy, is minimalat kg =0 (critical motions are swells
withaxes parallel to the equilibrium magnetic field) and that its critical value is 1750. There is an analogy
here with gravitation. We note that for stability of alayer of nonmagnetic liquid with rigid walls in a gravita-
tional field, the Galerkinmethod with test functions (13) in the first approximation gives a critical Rayleigh
number of 1750; in the second approximation, 1708.8, andin the third, 1707.77; i.e., an accuracy of ~2% is
produced even in the first approximation {6]. The change in the structure of critical motions produced by a
longitudinal magnetic field can easily be observed in experiment even inweak magnetic fields.

2. H= [0; 05 Hy(z) =H*+Gz]. We will consider the stability ofa layer of magnetizable liquid heated from
below in a transverse inhomogeneous magnetic field H,(z). Perturbations of velocity, temperature, and mag-
netic fieldare described by the system of equations (2)-(4), Xj=Z. Considering, as before, normal perturbations,
we obtain

1 2
(d ——kz) v— Ra,, k2 (G)—— dﬂ) =0;

dz? dz
. (& . _
U -t (dzg-—k“) @:O, (16)
o — A RO — A, 9 .y,
dz? dz

Veloeity and temperature perturbations on the boundaries satisfy Eq. (9). For the magnetic field perturbation
potential & the boundary conditions are obtained in the same manner as in the first case, but havea somewhat
different form [6]:

@i __IE_ D =0. 17
dz ~ 11—y amn
The system of equations (16) is invariant for the transformation z ——z, &——3&, so thatexact solutions
for velocity and temperature perturbations are even, while those for magnetic field perturbations are odd.

We will solve system (18) with boundary conditions (9), (17) by a variant of the Galerkin method described
above, representing the velocity, temperature, andmagnetic field in the form of power series

b=

[

n o . ns2 .
v= 3 a; (2~ 4T o= bhE—1/4 O=Y il
i=1 i=1

In the firstapproximation (n = 1) the problem is solvable analytically and leads to the following equation for the
stability boundary:
Ra,, = 19600 (0.8 4 4k2/105 — £*/630) (1/3 -+ k2/30)/k? - Ra,, Ay (14ds3/3 — dyy'2 = Bdlay/72)(d,, (18)
where d; is a third-order determinantwith elements
Dy, =D, = Ak/80 = k/8(1 %) 1/4;
D, = Dy, = Dy, — Ak?/448 = £/32(1 —X) + 1/16;
Dy = Dy = A 212304 — £/128 (1 — %) - 15/7.98;
D, =AR12+k/2(1 +%) + 1; Dy = AR/11.210 = £199(1 = %) = 25/9.98,
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and djs are obtained by replacement of the i-th column of determinant dy by the column(1/6, 1/40, 1/224). From
Eq. (18) itfollows thatmagnetic field perturbations involve the beginning of convective instability, increasing

the critical values of Ram; i.e., in this case, generally speaking, there is no analogy with gravitation. But

if the magnetic field distortions produced by temperature perturbations are small, then the magnetic field can
be considered specified.

The general condition for neglect of magnetic field perturbations was obtained in [10]by the method of
similarity theory

B Ay (19)

To produce a concrete meaning for condition (19), we will analyze the dependence of Ratcrf on the param-
eter A,, shown in Fig. 1, for various values of the parameter A,.

It is evident from the figure that for linear dependence of liquid magnetization on magnetic field intensity
(A =1), the contribution of magnetic field perturbations to critical magnetic Rayleigh number Rafrf willbe less
than10% for A,<0.25, while the value of this contribution decreases with growth of A,.

For a magnetizable liquid with parameters y ~10% deg/m, M* ~10° A/m, g ~107% 1/deg, K ~10° A/m . deg
the contribution of magneticfield perturbations to the critical temperature gradient willbe less than109 in
fields witha gradient G>4 - 10° A /m?.

Inorder toclarify the effect on convective stability of the relationship between field and magnetization,
Fig. 2 shows the critical value of Rayleigh number as a function of the nonlinearity parameter A, for various
values of the dimensionless complex A,. It isevident that at A;>>A,, Ralcrf tends to 1750, i.e., the gravitation
analogy exists, or, in other words, at A, >A, magnetic field perturbations have no significant effect on con-
vective stability of a magnetizable liquid [at A; > 7 ina homogeneous magnetic field (A, =1) the contribution of
magnetic field perturbations to the critical magnetic Rayleighnumber values is less than 10%). For available
magnetic liquids A; ~1, but in a purely formal manner we canconsider variation of this parameter over wide
bounds .

The dimensionless parameters Ray, and A, contain the value of the characteristic magnetic field gradient
in a nonisothermal magnetizable liquid G. We note that Gdoes notalways coincide with the characteristic mag-
netic fieldgradient in an isothermal liquid G' (we will term the latter the external gradient), and in the prob-
lem under consideration includes still another magnetic field gradient produced by the temperature difference
across the layer boundaries; i.e.,

G =G+ (K+ gM*) /(1 + ).

Inorder toclarify the dependence of critical external magnetic field gradient value on temperature gradient,
we compose dimensionless complexes, one of which

(Ram Ag) /% = (K + BM#) 12 g/ vap* (1 + ' /?
does not contain the magnetic field gradient, while the second
(Ra /A2)/? = G2 [mg (1 + )/vp*]?

does not contain the temperature gradient; we use here the notation
Ra, — g (K -+ BM*) G'ylilprvw,  As = (K 4 BM*) v/(1 %) G'.

Thenthe equation for the stability limit leads to the following dependence of dimensionless external mag-
netic field gradient (Ra,,/A;)! /? on dimensionless temperature gradient (RajpA,)Y/ 2%

(Ran /A5 )12 = 19600 (0.8 -+ 4k2/105 — k4/810)/k? (Ran Az )'/*+ (Ran Az)'/? (14dyy/3 — dyy/2 + 5dy/T2 — dy)/d.

The stability limit curve (Fig. 3) is shown on the coordinate plane {(Ray/A3)!/?, (RajA)!/?} bya solid
line [the dimensionless gradient (Ra{,nA;)i/2 is depicted in logarithmic scalein Fig. 3]. The dashed line shows
the stability curve which wouldbe obtained without consideration of magnetic field perturbations. If, in studying
the instability ofa horizontal layer of magnetizable liquid inan inhomogeneous magnetic field H,(z) we assume
that the magnetic field is specified, i.e., iffor the characteristic magnetic field gradient G we choose the exter-
nal gradient G', then the stability limit curve will bea hyperbola (dash — dot line of Fig. 3). It isevidentfrom
Fig. 3 that suchan approach, i.e., the magnéticfield specified and set equal tothe fieldin an isothermal mag-
netizable liquid, isapplicable for temperature gradients (RajAl)!/2<50.
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Thus, we can conclude that the character of the effect of magnetic field perturbations on convective stabil-
ity of a layer of magnetizable liquid is determined by both the intensity gradient and the direction of the equilib-
rium magnetic field. In other words, the critical Rayleigh number value corresponds to convective motions
not produced by magnetic field perturbations alongthe fieldaxis. If suchmotions areimpossible in a given
geometry, then the magnetic field perturbations which do develop are involved with the beginning of convective
instability, increasing the values of the critical parameters.

NOTATION

ﬁ, }_I: liquid magnetization and magnetic field strength vectors; M, H, magnitudes of these vectors; T,
liquid temperature; p, density; *, index denoting meanvalues over layer; x, magnetic susceptibility; v, coef-
ficient of kinematic viscosity; n, thermal diffusivity; y, characteristic temperature gradient; G, characteris-
tic magnetic field gradient; K, pyromagnetic coefficient; 8 = (—1/p)(8p/9T); 1y, Ty, radii of internal and exter-
nal boundaries of cylindrical layer; v, ® dimensionless perturbations; z, velocity and temperature components;
&, dimensionless magnetic field perturbation potential (H;=v&); k> =k§<+k2y, square of dimensionless wave
number; Pr=v/x, dimensionless Prandtl number.
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